Рассчитать высоту треугольника со сторонами 138, 99 и 68
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 99 + 68}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-138)(152.5-99)(152.5-68)}}{99}\normalsize = 63.8732434}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-138)(152.5-99)(152.5-68)}}{138}\normalsize = 45.8221094}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-138)(152.5-99)(152.5-68)}}{68}\normalsize = 92.9919279}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 99 и 68 равна 63.8732434
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 99 и 68 равна 45.8221094
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 99 и 68 равна 92.9919279
Ссылка на результат
?n1=138&n2=99&n3=68
Найти высоту треугольника со сторонами 117, 68 и 61
Найти высоту треугольника со сторонами 142, 112 и 96
Найти высоту треугольника со сторонами 118, 110 и 86
Найти высоту треугольника со сторонами 70, 61 и 25
Найти высоту треугольника со сторонами 148, 92 и 57
Найти высоту треугольника со сторонами 126, 86 и 53
Найти высоту треугольника со сторонами 142, 112 и 96
Найти высоту треугольника со сторонами 118, 110 и 86
Найти высоту треугольника со сторонами 70, 61 и 25
Найти высоту треугольника со сторонами 148, 92 и 57
Найти высоту треугольника со сторонами 126, 86 и 53