Рассчитать высоту треугольника со сторонами 138, 99 и 74
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 99 + 74}{2}} \normalsize = 155.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155.5(155.5-138)(155.5-99)(155.5-74)}}{99}\normalsize = 71.5125148}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155.5(155.5-138)(155.5-99)(155.5-74)}}{138}\normalsize = 51.3024562}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155.5(155.5-138)(155.5-99)(155.5-74)}}{74}\normalsize = 95.6721481}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 99 и 74 равна 71.5125148
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 99 и 74 равна 51.3024562
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 99 и 74 равна 95.6721481
Ссылка на результат
?n1=138&n2=99&n3=74
Найти высоту треугольника со сторонами 132, 129 и 83
Найти высоту треугольника со сторонами 119, 85 и 49
Найти высоту треугольника со сторонами 114, 81 и 63
Найти высоту треугольника со сторонами 145, 110 и 93
Найти высоту треугольника со сторонами 140, 113 и 81
Найти высоту треугольника со сторонами 96, 73 и 50
Найти высоту треугольника со сторонами 119, 85 и 49
Найти высоту треугольника со сторонами 114, 81 и 63
Найти высоту треугольника со сторонами 145, 110 и 93
Найти высоту треугольника со сторонами 140, 113 и 81
Найти высоту треугольника со сторонами 96, 73 и 50