Рассчитать высоту треугольника со сторонами 139, 100 и 43
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 100 + 43}{2}} \normalsize = 141}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{141(141-139)(141-100)(141-43)}}{100}\normalsize = 21.2892085}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{141(141-139)(141-100)(141-43)}}{139}\normalsize = 15.3159774}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{141(141-139)(141-100)(141-43)}}{43}\normalsize = 49.5097873}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 100 и 43 равна 21.2892085
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 100 и 43 равна 15.3159774
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 100 и 43 равна 49.5097873
Ссылка на результат
?n1=139&n2=100&n3=43
Найти высоту треугольника со сторонами 82, 69 и 39
Найти высоту треугольника со сторонами 46, 33 и 22
Найти высоту треугольника со сторонами 117, 72 и 70
Найти высоту треугольника со сторонами 72, 53 и 25
Найти высоту треугольника со сторонами 121, 83 и 82
Найти высоту треугольника со сторонами 104, 97 и 95
Найти высоту треугольника со сторонами 46, 33 и 22
Найти высоту треугольника со сторонами 117, 72 и 70
Найти высоту треугольника со сторонами 72, 53 и 25
Найти высоту треугольника со сторонами 121, 83 и 82
Найти высоту треугольника со сторонами 104, 97 и 95