Рассчитать высоту треугольника со сторонами 139, 101 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 101 + 46}{2}} \normalsize = 143}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{143(143-139)(143-101)(143-46)}}{101}\normalsize = 30.2285384}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{143(143-139)(143-101)(143-46)}}{139}\normalsize = 21.9646214}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{143(143-139)(143-101)(143-46)}}{46}\normalsize = 66.371356}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 101 и 46 равна 30.2285384
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 101 и 46 равна 21.9646214
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 101 и 46 равна 66.371356
Ссылка на результат
?n1=139&n2=101&n3=46
Найти высоту треугольника со сторонами 143, 110 и 100
Найти высоту треугольника со сторонами 118, 115 и 37
Найти высоту треугольника со сторонами 116, 105 и 71
Найти высоту треугольника со сторонами 149, 140 и 124
Найти высоту треугольника со сторонами 113, 97 и 75
Найти высоту треугольника со сторонами 143, 96 и 90
Найти высоту треугольника со сторонами 118, 115 и 37
Найти высоту треугольника со сторонами 116, 105 и 71
Найти высоту треугольника со сторонами 149, 140 и 124
Найти высоту треугольника со сторонами 113, 97 и 75
Найти высоту треугольника со сторонами 143, 96 и 90