Рассчитать высоту треугольника со сторонами 139, 101 и 70
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 101 + 70}{2}} \normalsize = 155}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155(155-139)(155-101)(155-70)}}{101}\normalsize = 66.8098974}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155(155-139)(155-101)(155-70)}}{139}\normalsize = 48.5453212}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155(155-139)(155-101)(155-70)}}{70}\normalsize = 96.3971377}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 101 и 70 равна 66.8098974
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 101 и 70 равна 48.5453212
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 101 и 70 равна 96.3971377
Ссылка на результат
?n1=139&n2=101&n3=70
Найти высоту треугольника со сторонами 105, 70 и 58
Найти высоту треугольника со сторонами 120, 104 и 20
Найти высоту треугольника со сторонами 79, 53 и 52
Найти высоту треугольника со сторонами 18, 11 и 10
Найти высоту треугольника со сторонами 68, 40 и 32
Найти высоту треугольника со сторонами 46, 33 и 25
Найти высоту треугольника со сторонами 120, 104 и 20
Найти высоту треугольника со сторонами 79, 53 и 52
Найти высоту треугольника со сторонами 18, 11 и 10
Найти высоту треугольника со сторонами 68, 40 и 32
Найти высоту треугольника со сторонами 46, 33 и 25