Рассчитать высоту треугольника со сторонами 139, 108 и 32
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 108 + 32}{2}} \normalsize = 139.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{139.5(139.5-139)(139.5-108)(139.5-32)}}{108}\normalsize = 8.99990355}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{139.5(139.5-139)(139.5-108)(139.5-32)}}{139}\normalsize = 6.99273081}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{139.5(139.5-139)(139.5-108)(139.5-32)}}{32}\normalsize = 30.3746745}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 108 и 32 равна 8.99990355
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 108 и 32 равна 6.99273081
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 108 и 32 равна 30.3746745
Ссылка на результат
?n1=139&n2=108&n3=32
Найти высоту треугольника со сторонами 128, 91 и 83
Найти высоту треугольника со сторонами 101, 62 и 62
Найти высоту треугольника со сторонами 130, 103 и 75
Найти высоту треугольника со сторонами 103, 78 и 48
Найти высоту треугольника со сторонами 47, 45 и 3
Найти высоту треугольника со сторонами 137, 136 и 15
Найти высоту треугольника со сторонами 101, 62 и 62
Найти высоту треугольника со сторонами 130, 103 и 75
Найти высоту треугольника со сторонами 103, 78 и 48
Найти высоту треугольника со сторонами 47, 45 и 3
Найти высоту треугольника со сторонами 137, 136 и 15