Рассчитать высоту треугольника со сторонами 139, 110 и 102

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 110 + 102}{2}} \normalsize = 175.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{175.5(175.5-139)(175.5-110)(175.5-102)}}{110}\normalsize = 100.968667}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{175.5(175.5-139)(175.5-110)(175.5-102)}}{139}\normalsize = 79.9032617}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{175.5(175.5-139)(175.5-110)(175.5-102)}}{102}\normalsize = 108.887778}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 110 и 102 равна 100.968667
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 110 и 102 равна 79.9032617
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 110 и 102 равна 108.887778
Ссылка на результат
?n1=139&n2=110&n3=102