Рассчитать высоту треугольника со сторонами 139, 110 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 110 + 57}{2}} \normalsize = 153}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153(153-139)(153-110)(153-57)}}{110}\normalsize = 54.0650847}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153(153-139)(153-110)(153-57)}}{139}\normalsize = 42.7853189}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153(153-139)(153-110)(153-57)}}{57}\normalsize = 104.336128}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 110 и 57 равна 54.0650847
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 110 и 57 равна 42.7853189
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 110 и 57 равна 104.336128
Ссылка на результат
?n1=139&n2=110&n3=57
Найти высоту треугольника со сторонами 115, 102 и 48
Найти высоту треугольника со сторонами 147, 100 и 69
Найти высоту треугольника со сторонами 86, 69 и 63
Найти высоту треугольника со сторонами 43, 30 и 24
Найти высоту треугольника со сторонами 64, 62 и 49
Найти высоту треугольника со сторонами 142, 136 и 27
Найти высоту треугольника со сторонами 147, 100 и 69
Найти высоту треугольника со сторонами 86, 69 и 63
Найти высоту треугольника со сторонами 43, 30 и 24
Найти высоту треугольника со сторонами 64, 62 и 49
Найти высоту треугольника со сторонами 142, 136 и 27