Рассчитать высоту треугольника со сторонами 139, 110 и 83
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 110 + 83}{2}} \normalsize = 166}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{166(166-139)(166-110)(166-83)}}{110}\normalsize = 82.9862799}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{166(166-139)(166-110)(166-83)}}{139}\normalsize = 65.6725956}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{166(166-139)(166-110)(166-83)}}{83}\normalsize = 109.981817}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 110 и 83 равна 82.9862799
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 110 и 83 равна 65.6725956
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 110 и 83 равна 109.981817
Ссылка на результат
?n1=139&n2=110&n3=83
Найти высоту треугольника со сторонами 127, 114 и 102
Найти высоту треугольника со сторонами 125, 95 и 43
Найти высоту треугольника со сторонами 110, 108 и 64
Найти высоту треугольника со сторонами 33, 33 и 29
Найти высоту треугольника со сторонами 132, 103 и 67
Найти высоту треугольника со сторонами 112, 94 и 63
Найти высоту треугольника со сторонами 125, 95 и 43
Найти высоту треугольника со сторонами 110, 108 и 64
Найти высоту треугольника со сторонами 33, 33 и 29
Найти высоту треугольника со сторонами 132, 103 и 67
Найти высоту треугольника со сторонами 112, 94 и 63