Рассчитать высоту треугольника со сторонами 139, 111 и 58
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 111 + 58}{2}} \normalsize = 154}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154(154-139)(154-111)(154-58)}}{111}\normalsize = 55.6394529}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154(154-139)(154-111)(154-58)}}{139}\normalsize = 44.4315056}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154(154-139)(154-111)(154-58)}}{58}\normalsize = 106.482401}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 111 и 58 равна 55.6394529
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 111 и 58 равна 44.4315056
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 111 и 58 равна 106.482401
Ссылка на результат
?n1=139&n2=111&n3=58
Найти высоту треугольника со сторонами 70, 55 и 49
Найти высоту треугольника со сторонами 105, 97 и 19
Найти высоту треугольника со сторонами 84, 53 и 45
Найти высоту треугольника со сторонами 137, 137 и 28
Найти высоту треугольника со сторонами 143, 108 и 108
Найти высоту треугольника со сторонами 103, 101 и 100
Найти высоту треугольника со сторонами 105, 97 и 19
Найти высоту треугольника со сторонами 84, 53 и 45
Найти высоту треугольника со сторонами 137, 137 и 28
Найти высоту треугольника со сторонами 143, 108 и 108
Найти высоту треугольника со сторонами 103, 101 и 100