Рассчитать высоту треугольника со сторонами 139, 113 и 28
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 113 + 28}{2}} \normalsize = 140}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140(140-139)(140-113)(140-28)}}{113}\normalsize = 11.5161275}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140(140-139)(140-113)(140-28)}}{139}\normalsize = 9.36203169}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140(140-139)(140-113)(140-28)}}{28}\normalsize = 46.4758002}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 113 и 28 равна 11.5161275
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 113 и 28 равна 9.36203169
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 113 и 28 равна 46.4758002
Ссылка на результат
?n1=139&n2=113&n3=28
Найти высоту треугольника со сторонами 129, 100 и 45
Найти высоту треугольника со сторонами 136, 131 и 118
Найти высоту треугольника со сторонами 131, 124 и 79
Найти высоту треугольника со сторонами 44, 43 и 20
Найти высоту треугольника со сторонами 118, 116 и 72
Найти высоту треугольника со сторонами 56, 44 и 23
Найти высоту треугольника со сторонами 136, 131 и 118
Найти высоту треугольника со сторонами 131, 124 и 79
Найти высоту треугольника со сторонами 44, 43 и 20
Найти высоту треугольника со сторонами 118, 116 и 72
Найти высоту треугольника со сторонами 56, 44 и 23