Рассчитать высоту треугольника со сторонами 139, 116 и 111
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 116 + 111}{2}} \normalsize = 183}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{183(183-139)(183-116)(183-111)}}{116}\normalsize = 107.455225}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{183(183-139)(183-116)(183-111)}}{139}\normalsize = 89.6748643}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{183(183-139)(183-116)(183-111)}}{111}\normalsize = 112.295551}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 116 и 111 равна 107.455225
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 116 и 111 равна 89.6748643
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 116 и 111 равна 112.295551
Ссылка на результат
?n1=139&n2=116&n3=111
Найти высоту треугольника со сторонами 147, 146 и 138
Найти высоту треугольника со сторонами 120, 115 и 6
Найти высоту треугольника со сторонами 144, 120 и 96
Найти высоту треугольника со сторонами 109, 101 и 24
Найти высоту треугольника со сторонами 144, 135 и 111
Найти высоту треугольника со сторонами 133, 120 и 54
Найти высоту треугольника со сторонами 120, 115 и 6
Найти высоту треугольника со сторонами 144, 120 и 96
Найти высоту треугольника со сторонами 109, 101 и 24
Найти высоту треугольника со сторонами 144, 135 и 111
Найти высоту треугольника со сторонами 133, 120 и 54