Рассчитать высоту треугольника со сторонами 139, 122 и 40

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 122 + 40}{2}} \normalsize = 150.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{150.5(150.5-139)(150.5-122)(150.5-40)}}{122}\normalsize = 38.2728589}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{150.5(150.5-139)(150.5-122)(150.5-40)}}{139}\normalsize = 33.5920056}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{150.5(150.5-139)(150.5-122)(150.5-40)}}{40}\normalsize = 116.73222}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 122 и 40 равна 38.2728589
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 122 и 40 равна 33.5920056
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 122 и 40 равна 116.73222
Ссылка на результат
?n1=139&n2=122&n3=40