Рассчитать высоту треугольника со сторонами 139, 123 и 17
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 123 + 17}{2}} \normalsize = 139.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{139.5(139.5-139)(139.5-123)(139.5-17)}}{123}\normalsize = 6.10529997}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{139.5(139.5-139)(139.5-123)(139.5-17)}}{139}\normalsize = 5.40253163}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{139.5(139.5-139)(139.5-123)(139.5-17)}}{17}\normalsize = 44.1736409}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 123 и 17 равна 6.10529997
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 123 и 17 равна 5.40253163
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 123 и 17 равна 44.1736409
Ссылка на результат
?n1=139&n2=123&n3=17
Найти высоту треугольника со сторонами 88, 46 и 46
Найти высоту треугольника со сторонами 142, 77 и 73
Найти высоту треугольника со сторонами 147, 103 и 78
Найти высоту треугольника со сторонами 103, 74 и 60
Найти высоту треугольника со сторонами 117, 99 и 76
Найти высоту треугольника со сторонами 145, 128 и 74
Найти высоту треугольника со сторонами 142, 77 и 73
Найти высоту треугольника со сторонами 147, 103 и 78
Найти высоту треугольника со сторонами 103, 74 и 60
Найти высоту треугольника со сторонами 117, 99 и 76
Найти высоту треугольника со сторонами 145, 128 и 74