Рассчитать высоту треугольника со сторонами 139, 123 и 45
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 123 + 45}{2}} \normalsize = 153.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153.5(153.5-139)(153.5-123)(153.5-45)}}{123}\normalsize = 44.1293839}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153.5(153.5-139)(153.5-123)(153.5-45)}}{139}\normalsize = 39.0497426}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153.5(153.5-139)(153.5-123)(153.5-45)}}{45}\normalsize = 120.620316}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 123 и 45 равна 44.1293839
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 123 и 45 равна 39.0497426
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 123 и 45 равна 120.620316
Ссылка на результат
?n1=139&n2=123&n3=45
Найти высоту треугольника со сторонами 52, 41 и 12
Найти высоту треугольника со сторонами 130, 90 и 60
Найти высоту треугольника со сторонами 40, 40 и 36
Найти высоту треугольника со сторонами 129, 129 и 36
Найти высоту треугольника со сторонами 108, 107 и 33
Найти высоту треугольника со сторонами 59, 56 и 46
Найти высоту треугольника со сторонами 130, 90 и 60
Найти высоту треугольника со сторонами 40, 40 и 36
Найти высоту треугольника со сторонами 129, 129 и 36
Найти высоту треугольника со сторонами 108, 107 и 33
Найти высоту треугольника со сторонами 59, 56 и 46