Рассчитать высоту треугольника со сторонами 139, 124 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 124 + 63}{2}} \normalsize = 163}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{163(163-139)(163-124)(163-63)}}{124}\normalsize = 62.9999257}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{163(163-139)(163-124)(163-63)}}{139}\normalsize = 56.2013725}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{163(163-139)(163-124)(163-63)}}{63}\normalsize = 123.999854}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 124 и 63 равна 62.9999257
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 124 и 63 равна 56.2013725
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 124 и 63 равна 123.999854
Ссылка на результат
?n1=139&n2=124&n3=63
Найти высоту треугольника со сторонами 80, 78 и 37
Найти высоту треугольника со сторонами 129, 111 и 69
Найти высоту треугольника со сторонами 130, 107 и 58
Найти высоту треугольника со сторонами 73, 69 и 12
Найти высоту треугольника со сторонами 127, 127 и 84
Найти высоту треугольника со сторонами 130, 108 и 78
Найти высоту треугольника со сторонами 129, 111 и 69
Найти высоту треугольника со сторонами 130, 107 и 58
Найти высоту треугольника со сторонами 73, 69 и 12
Найти высоту треугольника со сторонами 127, 127 и 84
Найти высоту треугольника со сторонами 130, 108 и 78