Рассчитать высоту треугольника со сторонами 139, 127 и 42

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 127 + 42}{2}} \normalsize = 154}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154(154-139)(154-127)(154-42)}}{127}\normalsize = 41.6220204}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154(154-139)(154-127)(154-42)}}{139}\normalsize = 38.0287525}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154(154-139)(154-127)(154-42)}}{42}\normalsize = 125.857062}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 127 и 42 равна 41.6220204
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 127 и 42 равна 38.0287525
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 127 и 42 равна 125.857062
Ссылка на результат
?n1=139&n2=127&n3=42