Рассчитать высоту треугольника со сторонами 139, 128 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 128 + 14}{2}} \normalsize = 140.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140.5(140.5-139)(140.5-128)(140.5-14)}}{128}\normalsize = 9.0199491}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140.5(140.5-139)(140.5-128)(140.5-14)}}{139}\normalsize = 8.30614018}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140.5(140.5-139)(140.5-128)(140.5-14)}}{14}\normalsize = 82.4681061}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 128 и 14 равна 9.0199491
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 128 и 14 равна 8.30614018
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 128 и 14 равна 82.4681061
Ссылка на результат
?n1=139&n2=128&n3=14
Найти высоту треугольника со сторонами 103, 99 и 73
Найти высоту треугольника со сторонами 117, 95 и 82
Найти высоту треугольника со сторонами 126, 83 и 65
Найти высоту треугольника со сторонами 124, 99 и 95
Найти высоту треугольника со сторонами 91, 90 и 81
Найти высоту треугольника со сторонами 142, 133 и 62
Найти высоту треугольника со сторонами 117, 95 и 82
Найти высоту треугольника со сторонами 126, 83 и 65
Найти высоту треугольника со сторонами 124, 99 и 95
Найти высоту треугольника со сторонами 91, 90 и 81
Найти высоту треугольника со сторонами 142, 133 и 62