Рассчитать высоту треугольника со сторонами 139, 128 и 42

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 128 + 42}{2}} \normalsize = 154.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154.5(154.5-139)(154.5-128)(154.5-42)}}{128}\normalsize = 41.7493112}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154.5(154.5-139)(154.5-128)(154.5-42)}}{139}\normalsize = 38.4454089}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154.5(154.5-139)(154.5-128)(154.5-42)}}{42}\normalsize = 127.235996}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 128 и 42 равна 41.7493112
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 128 и 42 равна 38.4454089
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 128 и 42 равна 127.235996
Ссылка на результат
?n1=139&n2=128&n3=42