Рассчитать высоту треугольника со сторонами 139, 129 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 129 + 54}{2}} \normalsize = 161}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{161(161-139)(161-129)(161-54)}}{129}\normalsize = 53.992252}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{161(161-139)(161-129)(161-54)}}{139}\normalsize = 50.1079173}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{161(161-139)(161-129)(161-54)}}{54}\normalsize = 128.981491}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 129 и 54 равна 53.992252
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 129 и 54 равна 50.1079173
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 129 и 54 равна 128.981491
Ссылка на результат
?n1=139&n2=129&n3=54
Найти высоту треугольника со сторонами 110, 104 и 99
Найти высоту треугольника со сторонами 57, 43 и 33
Найти высоту треугольника со сторонами 148, 143 и 78
Найти высоту треугольника со сторонами 82, 80 и 75
Найти высоту треугольника со сторонами 75, 61 и 60
Найти высоту треугольника со сторонами 109, 104 и 15
Найти высоту треугольника со сторонами 57, 43 и 33
Найти высоту треугольника со сторонами 148, 143 и 78
Найти высоту треугольника со сторонами 82, 80 и 75
Найти высоту треугольника со сторонами 75, 61 и 60
Найти высоту треугольника со сторонами 109, 104 и 15