Рассчитать высоту треугольника со сторонами 139, 130 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 130 + 46}{2}} \normalsize = 157.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{157.5(157.5-139)(157.5-130)(157.5-46)}}{130}\normalsize = 45.9850399}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{157.5(157.5-139)(157.5-130)(157.5-46)}}{139}\normalsize = 43.0075912}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{157.5(157.5-139)(157.5-130)(157.5-46)}}{46}\normalsize = 129.957721}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 130 и 46 равна 45.9850399
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 130 и 46 равна 43.0075912
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 130 и 46 равна 129.957721
Ссылка на результат
?n1=139&n2=130&n3=46
Найти высоту треугольника со сторонами 111, 108 и 43
Найти высоту треугольника со сторонами 144, 140 и 21
Найти высоту треугольника со сторонами 89, 88 и 63
Найти высоту треугольника со сторонами 60, 60 и 58
Найти высоту треугольника со сторонами 110, 88 и 67
Найти высоту треугольника со сторонами 135, 110 и 79
Найти высоту треугольника со сторонами 144, 140 и 21
Найти высоту треугольника со сторонами 89, 88 и 63
Найти высоту треугольника со сторонами 60, 60 и 58
Найти высоту треугольника со сторонами 110, 88 и 67
Найти высоту треугольника со сторонами 135, 110 и 79