Рассчитать высоту треугольника со сторонами 139, 131 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 131 + 30}{2}} \normalsize = 150}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{150(150-139)(150-131)(150-30)}}{131}\normalsize = 29.6120242}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{150(150-139)(150-131)(150-30)}}{139}\normalsize = 27.907735}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{150(150-139)(150-131)(150-30)}}{30}\normalsize = 129.305839}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 131 и 30 равна 29.6120242
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 131 и 30 равна 27.907735
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 131 и 30 равна 129.305839
Ссылка на результат
?n1=139&n2=131&n3=30
Найти высоту треугольника со сторонами 111, 103 и 97
Найти высоту треугольника со сторонами 105, 75 и 66
Найти высоту треугольника со сторонами 11, 9 и 8
Найти высоту треугольника со сторонами 100, 85 и 48
Найти высоту треугольника со сторонами 138, 119 и 42
Найти высоту треугольника со сторонами 67, 55 и 52
Найти высоту треугольника со сторонами 105, 75 и 66
Найти высоту треугольника со сторонами 11, 9 и 8
Найти высоту треугольника со сторонами 100, 85 и 48
Найти высоту треугольника со сторонами 138, 119 и 42
Найти высоту треугольника со сторонами 67, 55 и 52