Рассчитать высоту треугольника со сторонами 139, 132 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 132 + 36}{2}} \normalsize = 153.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153.5(153.5-139)(153.5-132)(153.5-36)}}{132}\normalsize = 35.9279484}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153.5(153.5-139)(153.5-132)(153.5-36)}}{139}\normalsize = 34.1186273}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153.5(153.5-139)(153.5-132)(153.5-36)}}{36}\normalsize = 131.735811}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 132 и 36 равна 35.9279484
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 132 и 36 равна 34.1186273
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 132 и 36 равна 131.735811
Ссылка на результат
?n1=139&n2=132&n3=36
Найти высоту треугольника со сторонами 47, 34 и 18
Найти высоту треугольника со сторонами 125, 96 и 92
Найти высоту треугольника со сторонами 128, 107 и 82
Найти высоту треугольника со сторонами 83, 80 и 64
Найти высоту треугольника со сторонами 139, 98 и 96
Найти высоту треугольника со сторонами 64, 51 и 22
Найти высоту треугольника со сторонами 125, 96 и 92
Найти высоту треугольника со сторонами 128, 107 и 82
Найти высоту треугольника со сторонами 83, 80 и 64
Найти высоту треугольника со сторонами 139, 98 и 96
Найти высоту треугольника со сторонами 64, 51 и 22