Рассчитать высоту треугольника со сторонами 139, 134 и 16
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 134 + 16}{2}} \normalsize = 144.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{144.5(144.5-139)(144.5-134)(144.5-16)}}{134}\normalsize = 15.4556288}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{144.5(144.5-139)(144.5-134)(144.5-16)}}{139}\normalsize = 14.8996709}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{144.5(144.5-139)(144.5-134)(144.5-16)}}{16}\normalsize = 129.440891}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 134 и 16 равна 15.4556288
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 134 и 16 равна 14.8996709
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 134 и 16 равна 129.440891
Ссылка на результат
?n1=139&n2=134&n3=16
Найти высоту треугольника со сторонами 105, 99 и 44
Найти высоту треугольника со сторонами 131, 104 и 74
Найти высоту треугольника со сторонами 96, 79 и 77
Найти высоту треугольника со сторонами 77, 60 и 41
Найти высоту треугольника со сторонами 82, 74 и 15
Найти высоту треугольника со сторонами 127, 111 и 75
Найти высоту треугольника со сторонами 131, 104 и 74
Найти высоту треугольника со сторонами 96, 79 и 77
Найти высоту треугольника со сторонами 77, 60 и 41
Найти высоту треугольника со сторонами 82, 74 и 15
Найти высоту треугольника со сторонами 127, 111 и 75