Рассчитать высоту треугольника со сторонами 139, 134 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 134 + 23}{2}} \normalsize = 148}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{148(148-139)(148-134)(148-23)}}{134}\normalsize = 22.7874818}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{148(148-139)(148-134)(148-23)}}{139}\normalsize = 21.9677882}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{148(148-139)(148-134)(148-23)}}{23}\normalsize = 132.76185}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 134 и 23 равна 22.7874818
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 134 и 23 равна 21.9677882
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 134 и 23 равна 132.76185
Ссылка на результат
?n1=139&n2=134&n3=23
Найти высоту треугольника со сторонами 131, 123 и 116
Найти высоту треугольника со сторонами 143, 138 и 132
Найти высоту треугольника со сторонами 136, 118 и 63
Найти высоту треугольника со сторонами 146, 137 и 34
Найти высоту треугольника со сторонами 114, 91 и 39
Найти высоту треугольника со сторонами 144, 135 и 84
Найти высоту треугольника со сторонами 143, 138 и 132
Найти высоту треугольника со сторонами 136, 118 и 63
Найти высоту треугольника со сторонами 146, 137 и 34
Найти высоту треугольника со сторонами 114, 91 и 39
Найти высоту треугольника со сторонами 144, 135 и 84