Рассчитать высоту треугольника со сторонами 139, 136 и 135
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 136 + 135}{2}} \normalsize = 205}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{205(205-139)(205-136)(205-135)}}{136}\normalsize = 118.881301}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{205(205-139)(205-136)(205-135)}}{139}\normalsize = 116.315518}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{205(205-139)(205-136)(205-135)}}{135}\normalsize = 119.761904}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 136 и 135 равна 118.881301
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 136 и 135 равна 116.315518
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 136 и 135 равна 119.761904
Ссылка на результат
?n1=139&n2=136&n3=135
Найти высоту треугольника со сторонами 133, 99 и 47
Найти высоту треугольника со сторонами 103, 85 и 73
Найти высоту треугольника со сторонами 82, 49 и 36
Найти высоту треугольника со сторонами 126, 86 и 64
Найти высоту треугольника со сторонами 76, 71 и 55
Найти высоту треугольника со сторонами 144, 111 и 110
Найти высоту треугольника со сторонами 103, 85 и 73
Найти высоту треугольника со сторонами 82, 49 и 36
Найти высоту треугольника со сторонами 126, 86 и 64
Найти высоту треугольника со сторонами 76, 71 и 55
Найти высоту треугольника со сторонами 144, 111 и 110