Рассчитать высоту треугольника со сторонами 139, 138 и 88
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 138 + 88}{2}} \normalsize = 182.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{182.5(182.5-139)(182.5-138)(182.5-88)}}{138}\normalsize = 83.7380574}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{182.5(182.5-139)(182.5-138)(182.5-88)}}{139}\normalsize = 83.1356254}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{182.5(182.5-139)(182.5-138)(182.5-88)}}{88}\normalsize = 131.316499}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 138 и 88 равна 83.7380574
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 138 и 88 равна 83.1356254
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 138 и 88 равна 131.316499
Ссылка на результат
?n1=139&n2=138&n3=88
Найти высоту треугольника со сторонами 112, 91 и 70
Найти высоту треугольника со сторонами 146, 135 и 95
Найти высоту треугольника со сторонами 98, 89 и 14
Найти высоту треугольника со сторонами 148, 133 и 82
Найти высоту треугольника со сторонами 56, 55 и 4
Найти высоту треугольника со сторонами 67, 41 и 28
Найти высоту треугольника со сторонами 146, 135 и 95
Найти высоту треугольника со сторонами 98, 89 и 14
Найти высоту треугольника со сторонами 148, 133 и 82
Найти высоту треугольника со сторонами 56, 55 и 4
Найти высоту треугольника со сторонами 67, 41 и 28