Рассчитать высоту треугольника со сторонами 139, 72 и 70
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 72 + 70}{2}} \normalsize = 140.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140.5(140.5-139)(140.5-72)(140.5-70)}}{72}\normalsize = 28.02342}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140.5(140.5-139)(140.5-72)(140.5-70)}}{139}\normalsize = 14.5157283}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140.5(140.5-139)(140.5-72)(140.5-70)}}{70}\normalsize = 28.8240891}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 72 и 70 равна 28.02342
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 72 и 70 равна 14.5157283
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 72 и 70 равна 28.8240891
Ссылка на результат
?n1=139&n2=72&n3=70
Найти высоту треугольника со сторонами 149, 145 и 118
Найти высоту треугольника со сторонами 102, 55 и 52
Найти высоту треугольника со сторонами 126, 115 и 49
Найти высоту треугольника со сторонами 132, 124 и 22
Найти высоту треугольника со сторонами 126, 111 и 20
Найти высоту треугольника со сторонами 130, 99 и 89
Найти высоту треугольника со сторонами 102, 55 и 52
Найти высоту треугольника со сторонами 126, 115 и 49
Найти высоту треугольника со сторонами 132, 124 и 22
Найти высоту треугольника со сторонами 126, 111 и 20
Найти высоту треугольника со сторонами 130, 99 и 89