Рассчитать высоту треугольника со сторонами 139, 75 и 70
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 75 + 70}{2}} \normalsize = 142}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142(142-139)(142-75)(142-70)}}{75}\normalsize = 38.2276131}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142(142-139)(142-75)(142-70)}}{139}\normalsize = 20.6264099}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142(142-139)(142-75)(142-70)}}{70}\normalsize = 40.9581568}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 75 и 70 равна 38.2276131
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 75 и 70 равна 20.6264099
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 75 и 70 равна 40.9581568
Ссылка на результат
?n1=139&n2=75&n3=70
Найти высоту треугольника со сторонами 28, 27 и 15
Найти высоту треугольника со сторонами 90, 90 и 16
Найти высоту треугольника со сторонами 139, 93 и 66
Найти высоту треугольника со сторонами 131, 106 и 71
Найти высоту треугольника со сторонами 76, 61 и 27
Найти высоту треугольника со сторонами 131, 129 и 23
Найти высоту треугольника со сторонами 90, 90 и 16
Найти высоту треугольника со сторонами 139, 93 и 66
Найти высоту треугольника со сторонами 131, 106 и 71
Найти высоту треугольника со сторонами 76, 61 и 27
Найти высоту треугольника со сторонами 131, 129 и 23