Рассчитать высоту треугольника со сторонами 139, 76 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 76 + 69}{2}} \normalsize = 142}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142(142-139)(142-76)(142-69)}}{76}\normalsize = 37.7011503}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142(142-139)(142-76)(142-69)}}{139}\normalsize = 20.6135786}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142(142-139)(142-76)(142-69)}}{69}\normalsize = 41.5259046}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 76 и 69 равна 37.7011503
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 76 и 69 равна 20.6135786
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 76 и 69 равна 41.5259046
Ссылка на результат
?n1=139&n2=76&n3=69
Найти высоту треугольника со сторонами 109, 73 и 47
Найти высоту треугольника со сторонами 141, 127 и 66
Найти высоту треугольника со сторонами 141, 124 и 41
Найти высоту треугольника со сторонами 150, 97 и 68
Найти высоту треугольника со сторонами 131, 109 и 90
Найти высоту треугольника со сторонами 150, 143 и 62
Найти высоту треугольника со сторонами 141, 127 и 66
Найти высоту треугольника со сторонами 141, 124 и 41
Найти высоту треугольника со сторонами 150, 97 и 68
Найти высоту треугольника со сторонами 131, 109 и 90
Найти высоту треугольника со сторонами 150, 143 и 62