Рассчитать высоту треугольника со сторонами 139, 76 и 72
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 76 + 72}{2}} \normalsize = 143.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{143.5(143.5-139)(143.5-76)(143.5-72)}}{76}\normalsize = 46.4572521}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{143.5(143.5-139)(143.5-76)(143.5-72)}}{139}\normalsize = 25.4010875}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{143.5(143.5-139)(143.5-76)(143.5-72)}}{72}\normalsize = 49.0382105}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 76 и 72 равна 46.4572521
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 76 и 72 равна 25.4010875
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 76 и 72 равна 49.0382105
Ссылка на результат
?n1=139&n2=76&n3=72
Найти высоту треугольника со сторонами 147, 141 и 13
Найти высоту треугольника со сторонами 118, 104 и 36
Найти высоту треугольника со сторонами 144, 137 и 30
Найти высоту треугольника со сторонами 82, 71 и 45
Найти высоту треугольника со сторонами 134, 98 и 90
Найти высоту треугольника со сторонами 142, 137 и 119
Найти высоту треугольника со сторонами 118, 104 и 36
Найти высоту треугольника со сторонами 144, 137 и 30
Найти высоту треугольника со сторонами 82, 71 и 45
Найти высоту треугольника со сторонами 134, 98 и 90
Найти высоту треугольника со сторонами 142, 137 и 119