Рассчитать высоту треугольника со сторонами 139, 80 и 76
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 80 + 76}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-139)(147.5-80)(147.5-76)}}{80}\normalsize = 61.4964986}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-139)(147.5-80)(147.5-76)}}{139}\normalsize = 35.3936682}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-139)(147.5-80)(147.5-76)}}{76}\normalsize = 64.7331564}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 80 и 76 равна 61.4964986
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 80 и 76 равна 35.3936682
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 80 и 76 равна 64.7331564
Ссылка на результат
?n1=139&n2=80&n3=76
Найти высоту треугольника со сторонами 115, 108 и 51
Найти высоту треугольника со сторонами 136, 90 и 73
Найти высоту треугольника со сторонами 107, 85 и 41
Найти высоту треугольника со сторонами 113, 89 и 52
Найти высоту треугольника со сторонами 125, 101 и 100
Найти высоту треугольника со сторонами 131, 129 и 104
Найти высоту треугольника со сторонами 136, 90 и 73
Найти высоту треугольника со сторонами 107, 85 и 41
Найти высоту треугольника со сторонами 113, 89 и 52
Найти высоту треугольника со сторонами 125, 101 и 100
Найти высоту треугольника со сторонами 131, 129 и 104