Рассчитать высоту треугольника со сторонами 139, 96 и 47
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 96 + 47}{2}} \normalsize = 141}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{141(141-139)(141-96)(141-47)}}{96}\normalsize = 22.7537772}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{141(141-139)(141-96)(141-47)}}{139}\normalsize = 15.7148389}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{141(141-139)(141-96)(141-47)}}{47}\normalsize = 46.4758002}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 96 и 47 равна 22.7537772
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 96 и 47 равна 15.7148389
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 96 и 47 равна 46.4758002
Ссылка на результат
?n1=139&n2=96&n3=47
Найти высоту треугольника со сторонами 118, 66 и 53
Найти высоту треугольника со сторонами 118, 94 и 71
Найти высоту треугольника со сторонами 127, 118 и 64
Найти высоту треугольника со сторонами 149, 122 и 98
Найти высоту треугольника со сторонами 120, 109 и 58
Найти высоту треугольника со сторонами 107, 95 и 94
Найти высоту треугольника со сторонами 118, 94 и 71
Найти высоту треугольника со сторонами 127, 118 и 64
Найти высоту треугольника со сторонами 149, 122 и 98
Найти высоту треугольника со сторонами 120, 109 и 58
Найти высоту треугольника со сторонами 107, 95 и 94