Рассчитать высоту треугольника со сторонами 139, 98 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 98 + 66}{2}} \normalsize = 151.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{151.5(151.5-139)(151.5-98)(151.5-66)}}{98}\normalsize = 60.0655131}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{151.5(151.5-139)(151.5-98)(151.5-66)}}{139}\normalsize = 42.3483474}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{151.5(151.5-139)(151.5-98)(151.5-66)}}{66}\normalsize = 89.1881861}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 98 и 66 равна 60.0655131
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 98 и 66 равна 42.3483474
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 98 и 66 равна 89.1881861
Ссылка на результат
?n1=139&n2=98&n3=66
Найти высоту треугольника со сторонами 121, 70 и 69
Найти высоту треугольника со сторонами 123, 112 и 36
Найти высоту треугольника со сторонами 144, 136 и 56
Найти высоту треугольника со сторонами 73, 55 и 33
Найти высоту треугольника со сторонами 132, 116 и 78
Найти высоту треугольника со сторонами 124, 124 и 17
Найти высоту треугольника со сторонами 123, 112 и 36
Найти высоту треугольника со сторонами 144, 136 и 56
Найти высоту треугольника со сторонами 73, 55 и 33
Найти высоту треугольника со сторонами 132, 116 и 78
Найти высоту треугольника со сторонами 124, 124 и 17