Рассчитать высоту треугольника со сторонами 14, 12 и 10
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{14 + 12 + 10}{2}} \normalsize = 18}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{18(18-14)(18-12)(18-10)}}{12}\normalsize = 9.79795897}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{18(18-14)(18-12)(18-10)}}{14}\normalsize = 8.39825055}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{18(18-14)(18-12)(18-10)}}{10}\normalsize = 11.7575508}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 14, 12 и 10 равна 9.79795897
Высота треугольника опущенная с вершины A на сторону BC со сторонами 14, 12 и 10 равна 8.39825055
Высота треугольника опущенная с вершины C на сторону AB со сторонами 14, 12 и 10 равна 11.7575508
Ссылка на результат
?n1=14&n2=12&n3=10
Найти высоту треугольника со сторонами 79, 79 и 60
Найти высоту треугольника со сторонами 117, 89 и 48
Найти высоту треугольника со сторонами 97, 58 и 58
Найти высоту треугольника со сторонами 144, 85 и 72
Найти высоту треугольника со сторонами 148, 134 и 54
Найти высоту треугольника со сторонами 116, 88 и 83
Найти высоту треугольника со сторонами 117, 89 и 48
Найти высоту треугольника со сторонами 97, 58 и 58
Найти высоту треугольника со сторонами 144, 85 и 72
Найти высоту треугольника со сторонами 148, 134 и 54
Найти высоту треугольника со сторонами 116, 88 и 83