Рассчитать высоту треугольника со сторонами 14, 9 и 7

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{14 + 9 + 7}{2}} \normalsize = 15}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{15(15-14)(15-9)(15-7)}}{9}\normalsize = 5.96284794}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{15(15-14)(15-9)(15-7)}}{14}\normalsize = 3.83325939}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{15(15-14)(15-9)(15-7)}}{7}\normalsize = 7.66651878}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 14, 9 и 7 равна 5.96284794
Высота треугольника опущенная с вершины A на сторону BC со сторонами 14, 9 и 7 равна 3.83325939
Высота треугольника опущенная с вершины C на сторону AB со сторонами 14, 9 и 7 равна 7.66651878
Ссылка на результат
?n1=14&n2=9&n3=7