Рассчитать высоту треугольника со сторонами 140, 103 и 61
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 103 + 61}{2}} \normalsize = 152}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152(152-140)(152-103)(152-61)}}{103}\normalsize = 55.3762986}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152(152-140)(152-103)(152-61)}}{140}\normalsize = 40.741134}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152(152-140)(152-103)(152-61)}}{61}\normalsize = 93.504242}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 103 и 61 равна 55.3762986
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 103 и 61 равна 40.741134
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 103 и 61 равна 93.504242
Ссылка на результат
?n1=140&n2=103&n3=61
Найти высоту треугольника со сторонами 75, 64 и 33
Найти высоту треугольника со сторонами 140, 139 и 30
Найти высоту треугольника со сторонами 81, 76 и 44
Найти высоту треугольника со сторонами 135, 86 и 82
Найти высоту треугольника со сторонами 139, 117 и 32
Найти высоту треугольника со сторонами 143, 140 и 76
Найти высоту треугольника со сторонами 140, 139 и 30
Найти высоту треугольника со сторонами 81, 76 и 44
Найти высоту треугольника со сторонами 135, 86 и 82
Найти высоту треугольника со сторонами 139, 117 и 32
Найти высоту треугольника со сторонами 143, 140 и 76