Рассчитать высоту треугольника со сторонами 140, 105 и 96
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 105 + 96}{2}} \normalsize = 170.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{170.5(170.5-140)(170.5-105)(170.5-96)}}{105}\normalsize = 95.9514615}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{170.5(170.5-140)(170.5-105)(170.5-96)}}{140}\normalsize = 71.9635962}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{170.5(170.5-140)(170.5-105)(170.5-96)}}{96}\normalsize = 104.946911}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 105 и 96 равна 95.9514615
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 105 и 96 равна 71.9635962
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 105 и 96 равна 104.946911
Ссылка на результат
?n1=140&n2=105&n3=96
Найти высоту треугольника со сторонами 55, 51 и 34
Найти высоту треугольника со сторонами 145, 92 и 71
Найти высоту треугольника со сторонами 98, 78 и 37
Найти высоту треугольника со сторонами 143, 108 и 47
Найти высоту треугольника со сторонами 65, 60 и 59
Найти высоту треугольника со сторонами 141, 127 и 80
Найти высоту треугольника со сторонами 145, 92 и 71
Найти высоту треугольника со сторонами 98, 78 и 37
Найти высоту треугольника со сторонами 143, 108 и 47
Найти высоту треугольника со сторонами 65, 60 и 59
Найти высоту треугольника со сторонами 141, 127 и 80