Рассчитать высоту треугольника со сторонами 140, 106 и 86
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 106 + 86}{2}} \normalsize = 166}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{166(166-140)(166-106)(166-86)}}{106}\normalsize = 85.8787011}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{166(166-140)(166-106)(166-86)}}{140}\normalsize = 65.0224451}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{166(166-140)(166-106)(166-86)}}{86}\normalsize = 105.850492}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 106 и 86 равна 85.8787011
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 106 и 86 равна 65.0224451
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 106 и 86 равна 105.850492
Ссылка на результат
?n1=140&n2=106&n3=86
Найти высоту треугольника со сторонами 47, 34 и 20
Найти высоту треугольника со сторонами 106, 85 и 38
Найти высоту треугольника со сторонами 149, 112 и 55
Найти высоту треугольника со сторонами 119, 117 и 36
Найти высоту треугольника со сторонами 124, 84 и 63
Найти высоту треугольника со сторонами 102, 84 и 22
Найти высоту треугольника со сторонами 106, 85 и 38
Найти высоту треугольника со сторонами 149, 112 и 55
Найти высоту треугольника со сторонами 119, 117 и 36
Найти высоту треугольника со сторонами 124, 84 и 63
Найти высоту треугольника со сторонами 102, 84 и 22