Рассчитать высоту треугольника со сторонами 140, 108 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 108 + 55}{2}} \normalsize = 151.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{151.5(151.5-140)(151.5-108)(151.5-55)}}{108}\normalsize = 50.0806275}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{151.5(151.5-140)(151.5-108)(151.5-55)}}{140}\normalsize = 38.6336269}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{151.5(151.5-140)(151.5-108)(151.5-55)}}{55}\normalsize = 98.3401413}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 108 и 55 равна 50.0806275
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 108 и 55 равна 38.6336269
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 108 и 55 равна 98.3401413
Ссылка на результат
?n1=140&n2=108&n3=55
Найти высоту треугольника со сторонами 26, 23 и 10
Найти высоту треугольника со сторонами 87, 84 и 50
Найти высоту треугольника со сторонами 134, 118 и 65
Найти высоту треугольника со сторонами 117, 78 и 73
Найти высоту треугольника со сторонами 134, 134 и 94
Найти высоту треугольника со сторонами 84, 75 и 70
Найти высоту треугольника со сторонами 87, 84 и 50
Найти высоту треугольника со сторонами 134, 118 и 65
Найти высоту треугольника со сторонами 117, 78 и 73
Найти высоту треугольника со сторонами 134, 134 и 94
Найти высоту треугольника со сторонами 84, 75 и 70