Рассчитать высоту треугольника со сторонами 140, 109 и 94
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 109 + 94}{2}} \normalsize = 171.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{171.5(171.5-140)(171.5-109)(171.5-94)}}{109}\normalsize = 93.8602479}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{171.5(171.5-140)(171.5-109)(171.5-94)}}{140}\normalsize = 73.0769073}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{171.5(171.5-140)(171.5-109)(171.5-94)}}{94}\normalsize = 108.837947}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 109 и 94 равна 93.8602479
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 109 и 94 равна 73.0769073
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 109 и 94 равна 108.837947
Ссылка на результат
?n1=140&n2=109&n3=94
Найти высоту треугольника со сторонами 95, 59 и 56
Найти высоту треугольника со сторонами 146, 125 и 33
Найти высоту треугольника со сторонами 132, 96 и 39
Найти высоту треугольника со сторонами 114, 110 и 41
Найти высоту треугольника со сторонами 132, 105 и 93
Найти высоту треугольника со сторонами 113, 72 и 54
Найти высоту треугольника со сторонами 146, 125 и 33
Найти высоту треугольника со сторонами 132, 96 и 39
Найти высоту треугольника со сторонами 114, 110 и 41
Найти высоту треугольника со сторонами 132, 105 и 93
Найти высоту треугольника со сторонами 113, 72 и 54