Рассчитать высоту треугольника со сторонами 140, 111 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 111 + 41}{2}} \normalsize = 146}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{146(146-140)(146-111)(146-41)}}{111}\normalsize = 32.3286628}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{146(146-140)(146-111)(146-41)}}{140}\normalsize = 25.6320112}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{146(146-140)(146-111)(146-41)}}{41}\normalsize = 87.5239408}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 111 и 41 равна 32.3286628
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 111 и 41 равна 25.6320112
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 111 и 41 равна 87.5239408
Ссылка на результат
?n1=140&n2=111&n3=41
Найти высоту треугольника со сторонами 143, 91 и 81
Найти высоту треугольника со сторонами 89, 70 и 36
Найти высоту треугольника со сторонами 150, 137 и 19
Найти высоту треугольника со сторонами 150, 134 и 21
Найти высоту треугольника со сторонами 44, 40 и 10
Найти высоту треугольника со сторонами 75, 53 и 37
Найти высоту треугольника со сторонами 89, 70 и 36
Найти высоту треугольника со сторонами 150, 137 и 19
Найти высоту треугольника со сторонами 150, 134 и 21
Найти высоту треугольника со сторонами 44, 40 и 10
Найти высоту треугольника со сторонами 75, 53 и 37