Рассчитать высоту треугольника со сторонами 140, 117 и 29
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 117 + 29}{2}} \normalsize = 143}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{143(143-140)(143-117)(143-29)}}{117}\normalsize = 19.2757764}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{143(143-140)(143-117)(143-29)}}{140}\normalsize = 16.1090417}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{143(143-140)(143-117)(143-29)}}{29}\normalsize = 77.7677875}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 117 и 29 равна 19.2757764
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 117 и 29 равна 16.1090417
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 117 и 29 равна 77.7677875
Ссылка на результат
?n1=140&n2=117&n3=29
Найти высоту треугольника со сторонами 96, 76 и 28
Найти высоту треугольника со сторонами 148, 140 и 52
Найти высоту треугольника со сторонами 129, 113 и 45
Найти высоту треугольника со сторонами 130, 121 и 93
Найти высоту треугольника со сторонами 111, 88 и 37
Найти высоту треугольника со сторонами 138, 134 и 132
Найти высоту треугольника со сторонами 148, 140 и 52
Найти высоту треугольника со сторонами 129, 113 и 45
Найти высоту треугольника со сторонами 130, 121 и 93
Найти высоту треугольника со сторонами 111, 88 и 37
Найти высоту треугольника со сторонами 138, 134 и 132