Рассчитать высоту треугольника со сторонами 140, 118 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 118 + 35}{2}} \normalsize = 146.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{146.5(146.5-140)(146.5-118)(146.5-35)}}{118}\normalsize = 29.4837923}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{146.5(146.5-140)(146.5-118)(146.5-35)}}{140}\normalsize = 24.8506249}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{146.5(146.5-140)(146.5-118)(146.5-35)}}{35}\normalsize = 99.4024997}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 118 и 35 равна 29.4837923
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 118 и 35 равна 24.8506249
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 118 и 35 равна 99.4024997
Ссылка на результат
?n1=140&n2=118&n3=35
Найти высоту треугольника со сторонами 141, 126 и 49
Найти высоту треугольника со сторонами 144, 125 и 105
Найти высоту треугольника со сторонами 80, 79 и 50
Найти высоту треугольника со сторонами 149, 122 и 97
Найти высоту треугольника со сторонами 136, 100 и 60
Найти высоту треугольника со сторонами 132, 71 и 67
Найти высоту треугольника со сторонами 144, 125 и 105
Найти высоту треугольника со сторонами 80, 79 и 50
Найти высоту треугольника со сторонами 149, 122 и 97
Найти высоту треугольника со сторонами 136, 100 и 60
Найти высоту треугольника со сторонами 132, 71 и 67