Рассчитать высоту треугольника со сторонами 140, 121 и 109
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 121 + 109}{2}} \normalsize = 185}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{185(185-140)(185-121)(185-109)}}{121}\normalsize = 105.180088}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{185(185-140)(185-121)(185-109)}}{140}\normalsize = 90.9056474}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{185(185-140)(185-121)(185-109)}}{109}\normalsize = 116.759547}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 121 и 109 равна 105.180088
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 121 и 109 равна 90.9056474
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 121 и 109 равна 116.759547
Ссылка на результат
?n1=140&n2=121&n3=109
Найти высоту треугольника со сторонами 148, 111 и 53
Найти высоту треугольника со сторонами 129, 105 и 80
Найти высоту треугольника со сторонами 121, 83 и 39
Найти высоту треугольника со сторонами 94, 91 и 5
Найти высоту треугольника со сторонами 106, 92 и 88
Найти высоту треугольника со сторонами 137, 104 и 90
Найти высоту треугольника со сторонами 129, 105 и 80
Найти высоту треугольника со сторонами 121, 83 и 39
Найти высоту треугольника со сторонами 94, 91 и 5
Найти высоту треугольника со сторонами 106, 92 и 88
Найти высоту треугольника со сторонами 137, 104 и 90