Рассчитать высоту треугольника со сторонами 140, 122 и 58
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 122 + 58}{2}} \normalsize = 160}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{160(160-140)(160-122)(160-58)}}{122}\normalsize = 57.7347166}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{160(160-140)(160-122)(160-58)}}{140}\normalsize = 50.3116816}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{160(160-140)(160-122)(160-58)}}{58}\normalsize = 121.44199}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 122 и 58 равна 57.7347166
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 122 и 58 равна 50.3116816
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 122 и 58 равна 121.44199
Ссылка на результат
?n1=140&n2=122&n3=58
Найти высоту треугольника со сторонами 143, 88 и 69
Найти высоту треугольника со сторонами 136, 93 и 84
Найти высоту треугольника со сторонами 131, 131 и 113
Найти высоту треугольника со сторонами 29, 24 и 20
Найти высоту треугольника со сторонами 141, 96 и 96
Найти высоту треугольника со сторонами 121, 116 и 49
Найти высоту треугольника со сторонами 136, 93 и 84
Найти высоту треугольника со сторонами 131, 131 и 113
Найти высоту треугольника со сторонами 29, 24 и 20
Найти высоту треугольника со сторонами 141, 96 и 96
Найти высоту треугольника со сторонами 121, 116 и 49