Рассчитать высоту треугольника со сторонами 140, 125 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 125 + 56}{2}} \normalsize = 160.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{160.5(160.5-140)(160.5-125)(160.5-56)}}{125}\normalsize = 55.8993494}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{160.5(160.5-140)(160.5-125)(160.5-56)}}{140}\normalsize = 49.9101334}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{160.5(160.5-140)(160.5-125)(160.5-56)}}{56}\normalsize = 124.775333}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 125 и 56 равна 55.8993494
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 125 и 56 равна 49.9101334
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 125 и 56 равна 124.775333
Ссылка на результат
?n1=140&n2=125&n3=56
Найти высоту треугольника со сторонами 32, 25 и 23
Найти высоту треугольника со сторонами 93, 86 и 73
Найти высоту треугольника со сторонами 140, 90 и 51
Найти высоту треугольника со сторонами 141, 127 и 117
Найти высоту треугольника со сторонами 72, 56 и 36
Найти высоту треугольника со сторонами 144, 122 и 103
Найти высоту треугольника со сторонами 93, 86 и 73
Найти высоту треугольника со сторонами 140, 90 и 51
Найти высоту треугольника со сторонами 141, 127 и 117
Найти высоту треугольника со сторонами 72, 56 и 36
Найти высоту треугольника со сторонами 144, 122 и 103