Рассчитать высоту треугольника со сторонами 140, 126 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 126 + 42}{2}} \normalsize = 154}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154(154-140)(154-126)(154-42)}}{126}\normalsize = 41.2735529}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154(154-140)(154-126)(154-42)}}{140}\normalsize = 37.1461977}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154(154-140)(154-126)(154-42)}}{42}\normalsize = 123.820659}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 126 и 42 равна 41.2735529
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 126 и 42 равна 37.1461977
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 126 и 42 равна 123.820659
Ссылка на результат
?n1=140&n2=126&n3=42
Найти высоту треугольника со сторонами 18, 16 и 3
Найти высоту треугольника со сторонами 139, 114 и 75
Найти высоту треугольника со сторонами 122, 105 и 90
Найти высоту треугольника со сторонами 107, 79 и 70
Найти высоту треугольника со сторонами 123, 100 и 94
Найти высоту треугольника со сторонами 136, 123 и 46
Найти высоту треугольника со сторонами 139, 114 и 75
Найти высоту треугольника со сторонами 122, 105 и 90
Найти высоту треугольника со сторонами 107, 79 и 70
Найти высоту треугольника со сторонами 123, 100 и 94
Найти высоту треугольника со сторонами 136, 123 и 46