Рассчитать высоту треугольника со сторонами 140, 127 и 65
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 127 + 65}{2}} \normalsize = 166}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{166(166-140)(166-127)(166-65)}}{127}\normalsize = 64.9321799}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{166(166-140)(166-127)(166-65)}}{140}\normalsize = 58.9027632}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{166(166-140)(166-127)(166-65)}}{65}\normalsize = 126.86749}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 127 и 65 равна 64.9321799
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 127 и 65 равна 58.9027632
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 127 и 65 равна 126.86749
Ссылка на результат
?n1=140&n2=127&n3=65
Найти высоту треугольника со сторонами 117, 113 и 30
Найти высоту треугольника со сторонами 79, 77 и 7
Найти высоту треугольника со сторонами 104, 82 и 26
Найти высоту треугольника со сторонами 143, 125 и 62
Найти высоту треугольника со сторонами 132, 125 и 56
Найти высоту треугольника со сторонами 92, 66 и 44
Найти высоту треугольника со сторонами 79, 77 и 7
Найти высоту треугольника со сторонами 104, 82 и 26
Найти высоту треугольника со сторонами 143, 125 и 62
Найти высоту треугольника со сторонами 132, 125 и 56
Найти высоту треугольника со сторонами 92, 66 и 44