Рассчитать высоту треугольника со сторонами 140, 128 и 112
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 128 + 112}{2}} \normalsize = 190}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{190(190-140)(190-128)(190-112)}}{128}\normalsize = 105.907075}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{190(190-140)(190-128)(190-112)}}{140}\normalsize = 96.829326}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{190(190-140)(190-128)(190-112)}}{112}\normalsize = 121.036657}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 128 и 112 равна 105.907075
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 128 и 112 равна 96.829326
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 128 и 112 равна 121.036657
Ссылка на результат
?n1=140&n2=128&n3=112
Найти высоту треугольника со сторонами 81, 60 и 49
Найти высоту треугольника со сторонами 112, 111 и 57
Найти высоту треугольника со сторонами 130, 93 и 86
Найти высоту треугольника со сторонами 145, 121 и 78
Найти высоту треугольника со сторонами 148, 139 и 30
Найти высоту треугольника со сторонами 134, 134 и 104
Найти высоту треугольника со сторонами 112, 111 и 57
Найти высоту треугольника со сторонами 130, 93 и 86
Найти высоту треугольника со сторонами 145, 121 и 78
Найти высоту треугольника со сторонами 148, 139 и 30
Найти высоту треугольника со сторонами 134, 134 и 104